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Introduction 
 This project was broken down into various stages. Each step was thoroughly executed 
which involved designing, implementing, and testing the relevant parts of the project. The 
hypothesis is that if each part works as expected (taking specified inputs and outputting correct 
outputs), the system as a whole will function as expected. This logic is exactly how the project 
was structured. About 1 month was spent making solidified schematics and test circuits of the 
non-FSM components (12-bit counter, up & down logic, edge detector, synchronizer, Schmitt 
trigger, debouncer, register file, and comparator). Then, about 1 week was spent on 
understanding the system design and using that to design, make a schematic for, and simulate the 
FSM. Finally, 1 week was spent on implementing the components (including the FSM) on a 
breadboard, debugging, and testing the system as a whole. This will only be a fail-proof process 
as long as the hypothesis that the system will work if the individual components work holds. 
And, this hypothesis only will hold if the theory of the system holds. So, we begin with stage 1: 
the theory of the system. 

Stage 1: Understanding the Circuit as a Whole (Assumptions, Preliminary Analysis) 
 This system has two main inputs, phase (Ph) and quadrature (Qt), and two main outputs, 
step and direction (dir). The inputs are the outputs of a printed circuit board (PCB) that is 
connected to a motor. The details of this PCB and the motor outputs are beyond the scope of this 
report. However, the essential part of them are the outputs used here as inputs (Ph, Qt). These 
signals pulse to indicate a number of ticks the motor has turned and whether the motor has turned 
clockwise or counterclockwise is indicated by looking at both Ph and Qt. The outputs of this 
system are step and direction. Step is a pulsing signal fed to the PCB then motor to indicate to 
rotate one “tick” and the direction output indicates the direction to turn.  




























































































Figure 1: Main System Diagram
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 Once the inputs and outputs of the system are understood, the system that takes inputs to 
outputs must be designed. A high level schematic is seen in Figure 1. We see that in a very broad 
way, that the inputs are counted and stored in a register. This is managed by an FSM which 
regulated the address and writing condition of the register. The FSM also manages the address 
and reading condition so that the comparator receives the goal address and the current position. 
The comparator then outputs a bit that represents direction (that goes to the motor) and an equal 
output (that is fed to the FSM). This is the basic understanding of the circuit. However, to 
understand the logic behind when certain actions occur, the FSM must be explained. This is done 
in stage 2. 
 In understanding the system, we see that each component is designed to receive specific 
inputs and then output specific outputs. The assumption here is that if each component works as 
designed, then the system as a whole will function correctly. Each component is rigorously tested 
(later on in stage 3) to ensure that they will work, then the system as a whole should function 
correctly as observed (later in stage 6).  
  
Stage 2a: Design of the FSM (Design Procedure, Simplification, Engineering Decisions) 
 The FSM was the main part of the system that required designing. My FSM is thoroughly 
described in the FSM simulation report submitted separately on Blackboard. For convenience, 
the following design explanation, decision process, and procedure comes from that report. 
 The goal of this FSM is to carry out the design of the robot arm as specified by the final 
project guidelines. To do this, I made the decision to use eight states (shown in Figure 2). This 
was a thoughtful choice as it uses all values of three state bits, thus wasting 0 bits of potential 
data. To progress the states, 3 inputs are needed (Action Button, Reset, Equal output from 
comparator; See legend in Figure 2 for more info). The output of the system are two address bits, 
L1L2, and a read (Re) and write (W) output. 








































































































Figure 2: Finite State Machine Design
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Figure 3: FSM Logic Tables and Equations, Schematic, and Output Logic  
(note: this is explained in depth in the FSM Report which is a separate Blackboard 

submission)
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 The first four states (S0,S1,S2,S3) are where the robot arm is recording the four stored 
positions. Therefore, in these states the write output is HIGH (but will be inverted when 
connected to the register file since it is active low) (and read is LOW) and the address is 
L1L0=00,01,10,11 respectively for the four states. Four all four of these states the input condition 
that R=0 and A=1 (see the legend for input descriptions) will progress the system to the next 
state (S0—>S1—>S2—>S3). As well, the condition on the inputs R=1 will return the system to 
state S0. During these first four states, the E input is not used and has no effect on the circuit. 
Upon being in S3, the final input condition of A=1, R=0 will bring the system to S4. This 
concludes analysis of the first four states with their respective inputs and outputs. 
 The second group of four states (S4,S5,S6,S7) is the playback stage. During these, the 
read output is HIGH (but inverted when connected to the active low register file) (and write is 
LOW) and the address again cycles through L1L0=00,01,10,11. During all of these states, the 
system progresses to the next state (S4—>S5—>S6—>S7) when E=1 and R=0. When R=1, the 
system returns to state S0 regardless of other inputs. During these states the input A is not used 
and has no effect on the function. When in state S7, the progress condition E=1 and R=0 
progresses the circuit back to S4 and the circuit cycles through these four states repeatedly until 
the R=1 input condition is satisfied. 
 The process used design this circuit was: (1) drawing the FSM flow diagram, then (2) 
assigning state and correlated outputs to each state, then (3) writing the next state logic table, 
then (4) writing next state logic boolean equations, then (5) simplifying those equations using 
Karnaugh maps and boolean simplification, then (6) writing output logic equations and 
simplifying those, and finally (7) drawing the circuit diagram. This process (including all steps) 
and the equations and schematic are shown in Figure 3. 

Stage 2b: Designing Other Component Circuits (Design Procedure, Simplification, 
Engineering Decisions) 
 The other components were the up/down logic (Figure 4), 12-bit counter (Figure 5), edge 
detection and synchronization circuit (Figure 6), 
debouncing and Schmitt trigger circuits (Figure 7), register 
file connections (Figure 8), and comparator connectors to 
make an 8-bit comparator out of two 4-bit comparators 
(Figure 9). 
 Most of these components required much less 
design than the FSM. Rather, they required reading the 
data sheets for the integrated circuits (ICs) used and 
determining which connections to make. But, a few of 
these components required more in depth design. 
 The first component is the up/down logic and is a 
component that required more design. The purpose of this 
component is to translate the Ph and Qt signals to UP and 
DOWN signals. The table in Figure 4 was constructed 

 

Figure 4: Up & Down Logic using Ph 
and Qt
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based on analysis of the conditions on phase (Pt) and quadrature (Qt). These use active low 
signals for up and down which is consistent with the rest of my circuit as the 12-bit counter 
(discussed later) uses active low logic. From the table, I was able to derive logic equations to 
describe UP and DOWN. This logic was then used to convert Ph and Qt into UP and DOWN 
which go to the counter.  
 The next component, the 12-bit counter, required less design. The purpose of this counter 
is to record the current location of the robot arm (and occasionally write the output of the counter 
to a register file). The three 4-bit counters were simply connected to create a 12-bit counter by 
respectively connecting BO,CO output of the less significant counter to the DN,UP input of the 
more significant counter. The least significant counter has the DN,UP input connected to 
DOWN,UP from the up/down logic. The most significant counter has nothing connected to its 
BO,CO outputs.The not(LOAD) input is connected to the inverted universal reset button and 
A,B,C,D are the load values and are connected such that 1000000000 is the “origin” location of 
the system. This value is used because it allows for the most possible values in either direction 
(clockwise or counterclockwise) as it is the most centered number in a 12-bit binary number 

(20482 out of 40952). This way, the system can record the largest range of locations in either 
direction. The CLR input is constantly ground because the load input will do the work of reseting 
the counter. The wiring for the 12-bit counter is in Figure 5. 
 The next component is the edge detection and synchronization circuit which was another 
than required a bit of design. The purpose of this is to synchronize the signals from the phase, 
quadrature, and action button inputs of the entire system. Then the edge detection is used on the 

Figure 5: 12-Bit Counter Component Schematic
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button and the phase input so that a single pulse is the only thing seen by the system. This is 
required so that holding the button or a constant signal from phase is only seen as one press or 
tick rotation of the motor. The quadrature input is only required to be synced (not edge detected) 
because of the up/down logic needed (see Figure 4). And, the reset button doesn’t need to be 
synchronized or edge detected as reseting multiple times or at any time isn’t an issue. To 
accomplish this, the circuit used a series of connections within a single flip-flop chip to cascade 
the signal through the flip-flop, thus synchronizing the signal. Then, to edge detect the signal, a 
NOR gate on the final two connections of the flip-flop. The exact setup is shown in Figure 6. 
 The next component of the system is the debounce and Schmitt Triggers. These were 
used only on the action button so that the signals from the button do not fluctuate when the 
button is released. If these weren’t 
used, a single press of the button 
could read as multiple presses 
which would cause 
malfunctioning of the circuit. The 
reset button did not require the 
use of these because if the reset 
button is pressed, it doesn’t 
matter if it resets multiple times. 
The debouncing circuit simply 
uses a capacitor in parallel with 
the button so that the output is 
smooth (rather than “bouncing”). 
The Schmitt trigger serves a 
similar purpose and was done 
with an IC. It was simply 
connected and input to the input 

Figure 6: Phase/Quadrature/Button Edge Detection & Synchronization Schematic

Figure 7: Button Debouncing & Schmitt Trigger Schematic
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of trigger 1 and the output to the output of trigger 1. The exact wiring is shown in Figure 7. 
 The next component is the register 
file which is used to store the locations 
recorded in states S0, S1, S2, and S3. 
However, each location has 12 bits, but 
each register file only has 4 bits. I chose 
to store the most significant 8 bits which 
will provide a high enough level of 
accuracy (as we have 0.26 degrees per 
pulse, making for ±4 degrees). The 
calculations for this come from a 200 
steps/revolution motor, 27 is the gear 
ratio, and 4 is a natural divider in 
measuring. This give 200*27/4=1350 
pulses/revolution or 0.26 degrees per 
pulse. Since I stored 8 bits, I needed two 
4-bit counters. By analyzing the data 
sheets, I saw that I needed to connect the 
respective counter to the QA-D input bits 
and the respective comparator to the Q1-4 
output bits. I also needed to connect the 
same FSM address bits L1L2 to the RA, 
RB, WA, WB address bits of both registers. Lastly, I connected the W and R output from the FSM 
(but inverted) to the ḠW and ḠR inputs of the register file. The exact connections are shown in 
Figure 8.  
 The final extra component is the 8-bit comparator, which much like the register file 
required just looking at the data sheet. This was a bit difficult because I had to concatenate two 
4-bit comparators. This required some connections between the comparators as the output of the 
entire comparator could depend on either comparator depending on how different the numbers 
are. The purpose of the comparator is to determine which way the motor must rotate to reach the 
desired position and to determine when it has reached that position. This was done using the 
output from the A<B output of the most significant comparator (which takes into account the less 
significant one) and the A=B output of the most significant comparator (also which takes into 
account the less significant one). The A<B output is high when A<B and low when A>=B. So, if 
that is the direction bit outputted to the motor, then the motor will turn correctly. Note that the 
A=B case won’t matter because the A=B output becoming high (which is sent to the FSM 
E=equal input) will trigger the FSM to progress states and start moving the motor to the next 
position. So, technically, the motor never will stop turning, but this is not an issue because there 
will be a new position to turn to as soon as the motor reaches the previous goal. One other 
remark is that the choice of using the A<B output is arbitrary and is based on whether DIR=1 
corresponds to clockwise or counterclockwise. This case be determined post implementation and 

Figure 8: Register File Schematic
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easily switched by changing to the A>B output if the wrong bit is chosen. The wiring done for 
the comparator requires inputs from both the register (desired location) and counter (current 
location). As well, it has the (A>B)out, (A=B)out, and (A<B)out from the less significant 
comparator connected to the corresponding “in” pins on the more significant comparator to 
concatenate the outputs. The exact wiring is shown in Figure 9. 
 This concludes the analysis of each individual component’s design and schematic. Next, 
each sub component is tested to ensure that it will work as desired. 

Stage 3: Simulating the FSM & Testing Other Components (All Inputs, Outputs Tested) 
 The first part of the circuit that needed to be simulated was the FSM. This component 
required the most logic that was completely self-fabricated (as the other components required 
almost sole reliance on data sheets). So, it had potentially the most fundamental flaws. This 
being said, it was critical to be simulated in Logism prior to implementation. The testing for the 
FSM was explained in the FSM simulation report, but is pasted here for convenience. I tested the 
circuit by going through each state and ensuring that: 

• The correct input conditions progress the state (A=1,R=0 for S0-S3; E=1,R=0 for S4-
S7; R=1 return any state to S0) 

• An inputs that should not effect the state do not (E=1 or 0 for S0-S3; A=1 or 0 for S4-
S7) 

• The correct outputs are set for each state (see the state encoding and output table in 
the diagram for correct outputs)   

 The Logisim circuit schematic is shown in Figure 10. A video demonstrating the behavior 
of the simulation is available at: https://youtu.be/SSdCTM96p20.  
 Next, I had to test each of the individual additional components. Since these were 
designed step by step and the error involved would mostly be in incorrect assumptions/analysis 
of the pins of various integrated circuits, the most efficient method of testing was by 

Figure 9: 8-Bit Comparator Schematic
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implementing these separately on a breadboard. 
In each case, the inputs and outputs could be set 
to see if the correct behavior is obtained. The 
testing for each component is explained below: 

• 12-bit counter (see Figure 11) 
• Connected least significant 

counter’s UP to a clock and 
DOWN to Vcc. 

• Read outputs at the first, fourth, 
eighth, and twelfth bit position 
with LEDs. 

• Saw that counting occurred and 
incremented as desired. 

• Edge Detection/Synchronization (see 
Figure 12) 

Figure 10: FSM Simulation Schematic

Figure 11: Counter Test Circuit
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• Connected to a button 

and a clock 
• Pressed the button 
• Observed that for a 

press of the button 
(whether held down or 
released), the result is 
one single, steady pulse 
is observed at the 
output. This 
demonstrates edge 
detection as we see a 
single pulse and 
synchronization 
because that pulse is 
steady thus in count with 
a clock. 

• Debouncing/Schmitt Trigger  
• Connected to a button 
• Used an oscilloscope to see the oscillations the result from pressing a button. The 

desired outcome was very small to no oscillations when the button is pressed. 
• Register-file 

• Connected to various hard wired position at the input pins 
• Pulse the write input low (recall: active-low logic) to write the input at the input 

pins to a hardwired memory location. 
• Hold the read input low (recall: active-low logic) and use LEDs to read the data 

stored at the hardwired memory location 
• Comparator 

• Hardwired two binary numbers to the 8-bits available 
• Used LEDs to observe the outputs at the A=B,A<B,A>B output pins of the most 

significant comparator (recall that the most significant comparator output takes 
into account the number passed to the less significant one by having connections 
between the comparators; see Figure 9) 

• Up/Down Logic 
• Connect the edge-detected and synchronized phase output and the edge-detected  

quadrature output of the motor to the logic, and observed the up and down output 
values. When the motor turns clockwise, UP should pulse “1-1-1-0-1-1-1”. When 
the motor turns counterclockwise, DOWN should pulse “1-1-1-0-1-1-1”. Recall 
that the logic is active-low. 

 This concludes the testing and simulation of all individual components of the circuit. 
According to the original hypothesis since each individual component has been tested and works, 

Figure 12: Edge Detection & Synchronization Test Circuit
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then the system is expected to behave as desired. The next stage involves implementing the FSM 
on the breadboard 

Stage 4: Implementing the FSM 
 This stage requires little discussion having described the function and design of the FSM 
in previous sections. However, an important note is that the availability and function of various 
ICs changed which ones were used. For example, when ANDs were not available or when there 
were many NANDs free on the breadboard, I used a NAND and inverted the output (by 
NANDing the output with itself). This made it so that I simplified my design and was as space 
conscious as possible so that the breadboard didn’t run out of space.  

Stage 5: Implementing and Connecting the Additional Components 
 After implementing my FSM, I then built and tested each individual additional 
component. Once they were tested (as described in Stage 3), I connected them to each other as 
shown in Figure 1. The final layout of the breadboard is shown in Figure 13. Note that a very 
specific color convention was used. As well, only the wiring that travels from one sub-system to 
another arches above the plane of the breadboard (for example, clock outputs [red wires in the 
middle] and counter to register [yellow wires at the top]). Any intra-component wiring is flat (for 
example, the FSM next state wiring). 

Stage 6: Testing System (Inputs, Outputs, Behavior Tested) 
 The very final stage is testing the completed circuit. This was done by changing each 
input to observe every possible case and observe the output to ensure the desired behavior is 
obtained. The various cases (not including those described in Stage 3 for the FSM) are explained 
below: 

• Action: Reset pressed, [motor moved, action pressed] x 4 (S2S1S0=000,001,010,011) 
• Result: Motor begins moving, first to the motor’s location when the action button was 

first pressed, then to the second, and so on. (S2S1S0=100,101,110,111) 
• At any point in the cycle, pressing the reset button returns the system to the reading 

state and it awaits the pressing of the action button 
 In order to know whether the system was in the right state at a given point, I used LEDs 
(the three most down and to the left in Figure 13 & 14) to represent the state. I saw that in record 
mode, the S2 bit was always 0 while in playback it was 1. This is as expected. Further, I could see 
that S1S0 represented which stored value the motor is recording (in the recording states) or which 
one it is moving to (in the playback states). The complete testing is executed and explained in the 
video here: https://youtu.be/ygAyl9CfRJU. 

Problems Faced: 
• In simulating my FSM, I found unpredictable behavior that resulted from R being 0. I 

found that this was because I had at first neglected to include R=0 in my state 

https://youtu.be/ygAyl9CfRJU
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progression condition. This was easily fixed by adding that condition which just 
required using a single AND gate with R’ and the existing output.  

• In the initial testing phase, I observed very strange clock behavior (I observed this with 
an oscilloscope). I found that this was the result of a short in my circuit that was the 
result of not powering a few of my ICs (since they weren’t being used yet, but were 
connected to outputs). This was easily fixed once I connected those ICs properly. 

• At first, I both cleared and loaded values to the counter which resulted in an 
indeterminate state since I may have either loaded or reset last (depending on whether 
CLR or LOAD was active more recently). This was easily fixed by wiring CLR to 
ground and have only LOAD used to “reset” (to preset value) by connecting to reset. 

• There were a few wiring errors in the FSM when first implemented. This was easily 
debugged by seeing which state bits were misbehaving when the action button was 
pressed (i.e. they didn’t progress from S2S1S0=000 to 001 to 010 to 011, and so on). I 
found that I had wired one output to pin 8 rather than 7. I also found that I had inverted 
an input because I used a NAND rather than AND and forgot to invert the output. These 
were both fixed once the problem was identified by making the correct connections.

Figure 14: Final Implemented System (labeled for components)
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Figure 13: Final Implemented System (unlabelled to show wiring) 
White = Vcc & Ground 
Column 1 top half (Registers): [Red] Register to comparator; [Yellow] Counter to register; [Green] FSM to register 
Column 1 bottom half (Comparators): [Black] Comparator to Comparator; [Yellow] Counter to Comparator; [Red] 
Reg to comparator 
Column 3 (FSM): [Green] S2 next state logic; [Yellow] S1 next state logic; [Black] S0 next state logic 
Red over arching wires: System clock output 
Black & Red over arching wires: State bits from FSM to other sub-components

https://youtu.be/ygAyl9CfRJU

