
Benjamin Straus
May 9, 2018

DSF Final Project
Robot Arm Report

Video Link: https://youtu.be/ygAyl9CfRJU
Introduction
 This project was broken down into various stages. Each step was thoroughly executed
which involved designing, implementing, and testing the relevant parts of the project. The
hypothesis is that if each part works as expected (taking specified inputs and outputting correct
outputs), the system as a whole will function as expected. This logic is exactly how the project
was structured. About 1 month was spent making solidified schematics and test circuits of the
non-FSM components (12-bit counter, up & down logic, edge detector, synchronizer, Schmitt
trigger, debouncer, register file, and comparator). Then, about 1 week was spent on
understanding the system design and using that to design, make a schematic for, and simulate the
FSM. Finally, 1 week was spent on implementing the components (including the FSM) on a
breadboard, debugging, and testing the system as a whole. This will only be a fail-proof process
as long as the hypothesis that the system will work if the individual components work holds.
And, this hypothesis only will hold if the theory of the system holds. So, we begin with stage 1:
the theory of the system.

Stage 1: Understanding the Circuit as a Whole (Assumptions, Preliminary Analysis)
 This system has two main inputs, phase (Ph) and quadrature (Qt), and two main outputs,
step and direction (dir). The inputs are the outputs of a printed circuit board (PCB) that is
connected to a motor. The details of this PCB and the motor outputs are beyond the scope of this
report. However, the essential part of them are the outputs used here as inputs (Ph, Qt). These
signals pulse to indicate a number of ticks the motor has turned and whether the motor has turned
clockwise or counterclockwise is indicated by looking at both Ph and Qt. The outputs of this
system are step and direction. Step is a pulsing signal fed to the PCB then motor to indicate to
rotate one “tick” and the direction output indicates the direction to turn.

Figure 1: Main System Diagram

https://youtu.be/ygAyl9CfRJU

Benjamin Straus
May 9, 2018

DSF Final Project
Robot Arm Report

Video Link: https://youtu.be/ygAyl9CfRJU
 Once the inputs and outputs of the system are understood, the system that takes inputs to
outputs must be designed. A high level schematic is seen in Figure 1. We see that in a very broad
way, that the inputs are counted and stored in a register. This is managed by an FSM which
regulated the address and writing condition of the register. The FSM also manages the address
and reading condition so that the comparator receives the goal address and the current position.
The comparator then outputs a bit that represents direction (that goes to the motor) and an equal
output (that is fed to the FSM). This is the basic understanding of the circuit. However, to
understand the logic behind when certain actions occur, the FSM must be explained. This is done
in stage 2.
 In understanding the system, we see that each component is designed to receive specific
inputs and then output specific outputs. The assumption here is that if each component works as
designed, then the system as a whole will function correctly. Each component is rigorously tested
(later on in stage 3) to ensure that they will work, then the system as a whole should function
correctly as observed (later in stage 6).

Stage 2a: Design of the FSM (Design Procedure, Simplification, Engineering Decisions)
 The FSM was the main part of the system that required designing. My FSM is thoroughly
described in the FSM simulation report submitted separately on Blackboard. For convenience,
the following design explanation, decision process, and procedure comes from that report.
 The goal of this FSM is to carry out the design of the robot arm as specified by the final
project guidelines. To do this, I made the decision to use eight states (shown in Figure 2). This
was a thoughtful choice as it uses all values of three state bits, thus wasting 0 bits of potential
data. To progress the states, 3 inputs are needed (Action Button, Reset, Equal output from
comparator; See legend in Figure 2 for more info). The output of the system are two address bits,
L1L2, and a read (Re) and write (W) output.

Figure 2: Finite State Machine Design

https://youtu.be/ygAyl9CfRJU

Benjamin Straus
May 9, 2018

DSF Final Project
Robot Arm Report

Video Link: https://youtu.be/ygAyl9CfRJU

Figure 3: FSM Logic Tables and Equations, Schematic, and Output Logic
(note: this is explained in depth in the FSM Report which is a separate Blackboard

submission)

https://youtu.be/ygAyl9CfRJU

Benjamin Straus
May 9, 2018

DSF Final Project
Robot Arm Report

Video Link: https://youtu.be/ygAyl9CfRJU
 The first four states (S0,S1,S2,S3) are where the robot arm is recording the four stored
positions. Therefore, in these states the write output is HIGH (but will be inverted when
connected to the register file since it is active low) (and read is LOW) and the address is
L1L0=00,01,10,11 respectively for the four states. Four all four of these states the input condition
that R=0 and A=1 (see the legend for input descriptions) will progress the system to the next
state (S0—>S1—>S2—>S3). As well, the condition on the inputs R=1 will return the system to
state S0. During these first four states, the E input is not used and has no effect on the circuit.
Upon being in S3, the final input condition of A=1, R=0 will bring the system to S4. This
concludes analysis of the first four states with their respective inputs and outputs.
 The second group of four states (S4,S5,S6,S7) is the playback stage. During these, the
read output is HIGH (but inverted when connected to the active low register file) (and write is
LOW) and the address again cycles through L1L0=00,01,10,11. During all of these states, the
system progresses to the next state (S4—>S5—>S6—>S7) when E=1 and R=0. When R=1, the
system returns to state S0 regardless of other inputs. During these states the input A is not used
and has no effect on the function. When in state S7, the progress condition E=1 and R=0
progresses the circuit back to S4 and the circuit cycles through these four states repeatedly until
the R=1 input condition is satisfied.
 The process used design this circuit was: (1) drawing the FSM flow diagram, then (2)
assigning state and correlated outputs to each state, then (3) writing the next state logic table,
then (4) writing next state logic boolean equations, then (5) simplifying those equations using
Karnaugh maps and boolean simplification, then (6) writing output logic equations and
simplifying those, and finally (7) drawing the circuit diagram. This process (including all steps)
and the equations and schematic are shown in Figure 3.

Stage 2b: Designing Other Component Circuits (Design Procedure, Simplification,
Engineering Decisions)
 The other components were the up/down logic (Figure 4), 12-bit counter (Figure 5), edge
detection and synchronization circuit (Figure 6),
debouncing and Schmitt trigger circuits (Figure 7), register
file connections (Figure 8), and comparator connectors to
make an 8-bit comparator out of two 4-bit comparators
(Figure 9).
 Most of these components required much less
design than the FSM. Rather, they required reading the
data sheets for the integrated circuits (ICs) used and
determining which connections to make. But, a few of
these components required more in depth design.
 The first component is the up/down logic and is a
component that required more design. The purpose of this
component is to translate the Ph and Qt signals to UP and
DOWN signals. The table in Figure 4 was constructed

Figure 4: Up & Down Logic using Ph
and Qt

https://youtu.be/ygAyl9CfRJU

Benjamin Straus
May 9, 2018

DSF Final Project
Robot Arm Report

Video Link: https://youtu.be/ygAyl9CfRJU
based on analysis of the conditions on phase (Pt) and quadrature (Qt). These use active low
signals for up and down which is consistent with the rest of my circuit as the 12-bit counter
(discussed later) uses active low logic. From the table, I was able to derive logic equations to
describe UP and DOWN. This logic was then used to convert Ph and Qt into UP and DOWN
which go to the counter.
 The next component, the 12-bit counter, required less design. The purpose of this counter
is to record the current location of the robot arm (and occasionally write the output of the counter
to a register file). The three 4-bit counters were simply connected to create a 12-bit counter by
respectively connecting BO,CO output of the less significant counter to the DN,UP input of the
more significant counter. The least significant counter has the DN,UP input connected to
DOWN,UP from the up/down logic. The most significant counter has nothing connected to its
BO,CO outputs.The not(LOAD) input is connected to the inverted universal reset button and
A,B,C,D are the load values and are connected such that 1000000000 is the “origin” location of
the system. This value is used because it allows for the most possible values in either direction
(clockwise or counterclockwise) as it is the most centered number in a 12-bit binary number

(20482 out of 40952). This way, the system can record the largest range of locations in either
direction. The CLR input is constantly ground because the load input will do the work of reseting
the counter. The wiring for the 12-bit counter is in Figure 5.
 The next component is the edge detection and synchronization circuit which was another
than required a bit of design. The purpose of this is to synchronize the signals from the phase,
quadrature, and action button inputs of the entire system. Then the edge detection is used on the

Figure 5: 12-Bit Counter Component Schematic

DOWN

UP

https://youtu.be/ygAyl9CfRJU

Benjamin Straus
May 9, 2018

DSF Final Project
Robot Arm Report

Video Link: https://youtu.be/ygAyl9CfRJU

button and the phase input so that a single pulse is the only thing seen by the system. This is
required so that holding the button or a constant signal from phase is only seen as one press or
tick rotation of the motor. The quadrature input is only required to be synced (not edge detected)
because of the up/down logic needed (see Figure 4). And, the reset button doesn’t need to be
synchronized or edge detected as reseting multiple times or at any time isn’t an issue. To
accomplish this, the circuit used a series of connections within a single flip-flop chip to cascade
the signal through the flip-flop, thus synchronizing the signal. Then, to edge detect the signal, a
NOR gate on the final two connections of the flip-flop. The exact setup is shown in Figure 6.
 The next component of the system is the debounce and Schmitt Triggers. These were
used only on the action button so that the signals from the button do not fluctuate when the
button is released. If these weren’t
used, a single press of the button
could read as multiple presses
which would cause
malfunctioning of the circuit. The
reset button did not require the
use of these because if the reset
button is pressed, it doesn’t
matter if it resets multiple times.
The debouncing circuit simply
uses a capacitor in parallel with
the button so that the output is
smooth (rather than “bouncing”).
The Schmitt trigger serves a
similar purpose and was done
with an IC. It was simply
connected and input to the input

Figure 6: Phase/Quadrature/Button Edge Detection & Synchronization Schematic

Figure 7: Button Debouncing & Schmitt Trigger Schematic

https://youtu.be/ygAyl9CfRJU

Benjamin Straus
May 9, 2018

DSF Final Project
Robot Arm Report

Video Link: https://youtu.be/ygAyl9CfRJU
of trigger 1 and the output to the output of trigger 1. The exact wiring is shown in Figure 7.
 The next component is the register
file which is used to store the locations
recorded in states S0, S1, S2, and S3.
However, each location has 12 bits, but
each register file only has 4 bits. I chose
to store the most significant 8 bits which
will provide a high enough level of
accuracy (as we have 0.26 degrees per
pulse, making for ±4 degrees). The
calculations for this come from a 200
steps/revolution motor, 27 is the gear
ratio, and 4 is a natural divider in
measuring. This give 200*27/4=1350
pulses/revolution or 0.26 degrees per
pulse. Since I stored 8 bits, I needed two
4-bit counters. By analyzing the data
sheets, I saw that I needed to connect the
respective counter to the QA-D input bits
and the respective comparator to the Q1-4
output bits. I also needed to connect the
same FSM address bits L1L2 to the RA,
RB, WA, WB address bits of both registers. Lastly, I connected the W and R output from the FSM
(but inverted) to the ḠW and ḠR inputs of the register file. The exact connections are shown in
Figure 8.
 The final extra component is the 8-bit comparator, which much like the register file
required just looking at the data sheet. This was a bit difficult because I had to concatenate two
4-bit comparators. This required some connections between the comparators as the output of the
entire comparator could depend on either comparator depending on how different the numbers
are. The purpose of the comparator is to determine which way the motor must rotate to reach the
desired position and to determine when it has reached that position. This was done using the
output from the A<B output of the most significant comparator (which takes into account the less
significant one) and the A=B output of the most significant comparator (also which takes into
account the less significant one). The A<B output is high when A<B and low when A>=B. So, if
that is the direction bit outputted to the motor, then the motor will turn correctly. Note that the
A=B case won’t matter because the A=B output becoming high (which is sent to the FSM
E=equal input) will trigger the FSM to progress states and start moving the motor to the next
position. So, technically, the motor never will stop turning, but this is not an issue because there
will be a new position to turn to as soon as the motor reaches the previous goal. One other
remark is that the choice of using the A<B output is arbitrary and is based on whether DIR=1
corresponds to clockwise or counterclockwise. This case be determined post implementation and

Figure 8: Register File Schematic

https://youtu.be/ygAyl9CfRJU

Benjamin Straus
May 9, 2018

DSF Final Project
Robot Arm Report

Video Link: https://youtu.be/ygAyl9CfRJU

easily switched by changing to the A>B output if the wrong bit is chosen. The wiring done for
the comparator requires inputs from both the register (desired location) and counter (current
location). As well, it has the (A>B)out, (A=B)out, and (A<B)out from the less significant
comparator connected to the corresponding “in” pins on the more significant comparator to
concatenate the outputs. The exact wiring is shown in Figure 9.
 This concludes the analysis of each individual component’s design and schematic. Next,
each sub component is tested to ensure that it will work as desired.

Stage 3: Simulating the FSM & Testing Other Components (All Inputs, Outputs Tested)
 The first part of the circuit that needed to be simulated was the FSM. This component
required the most logic that was completely self-fabricated (as the other components required
almost sole reliance on data sheets). So, it had potentially the most fundamental flaws. This
being said, it was critical to be simulated in Logism prior to implementation. The testing for the
FSM was explained in the FSM simulation report, but is pasted here for convenience. I tested the
circuit by going through each state and ensuring that:

• The correct input conditions progress the state (A=1,R=0 for S0-S3; E=1,R=0 for S4-
S7; R=1 return any state to S0)

• An inputs that should not effect the state do not (E=1 or 0 for S0-S3; A=1 or 0 for S4-
S7)

• The correct outputs are set for each state (see the state encoding and output table in
the diagram for correct outputs)

 The Logisim circuit schematic is shown in Figure 10. A video demonstrating the behavior
of the simulation is available at: https://youtu.be/SSdCTM96p20.
 Next, I had to test each of the individual additional components. Since these were
designed step by step and the error involved would mostly be in incorrect assumptions/analysis
of the pins of various integrated circuits, the most efficient method of testing was by

Figure 9: 8-Bit Comparator Schematic

https://youtu.be/SSdCTM96p20
https://youtu.be/ygAyl9CfRJU

Benjamin Straus
May 9, 2018

DSF Final Project
Robot Arm Report

Video Link: https://youtu.be/ygAyl9CfRJU

implementing these separately on a breadboard.
In each case, the inputs and outputs could be set
to see if the correct behavior is obtained. The
testing for each component is explained below:

• 12-bit counter (see Figure 11)
• Connected least significant

counter’s UP to a clock and
DOWN to Vcc.

• Read outputs at the first, fourth,
eighth, and twelfth bit position
with LEDs.

• Saw that counting occurred and
incremented as desired.

• Edge Detection/Synchronization (see
Figure 12)

Figure 10: FSM Simulation Schematic

Figure 11: Counter Test Circuit

https://youtu.be/ygAyl9CfRJU

Benjamin Straus
May 9, 2018

DSF Final Project
Robot Arm Report

Video Link: https://youtu.be/ygAyl9CfRJU
• Connected to a button

and a clock
• Pressed the button
• Observed that for a

press of the button
(whether held down or
released), the result is
one single, steady pulse
is observed at the
output. This
demonstrates edge
detection as we see a
single pulse and
synchronization
because that pulse is
steady thus in count with
a clock.

• Debouncing/Schmitt Trigger
• Connected to a button
• Used an oscilloscope to see the oscillations the result from pressing a button. The

desired outcome was very small to no oscillations when the button is pressed.
• Register-file

• Connected to various hard wired position at the input pins
• Pulse the write input low (recall: active-low logic) to write the input at the input

pins to a hardwired memory location.
• Hold the read input low (recall: active-low logic) and use LEDs to read the data

stored at the hardwired memory location
• Comparator

• Hardwired two binary numbers to the 8-bits available
• Used LEDs to observe the outputs at the A=B,A<B,A>B output pins of the most

significant comparator (recall that the most significant comparator output takes
into account the number passed to the less significant one by having connections
between the comparators; see Figure 9)

• Up/Down Logic
• Connect the edge-detected and synchronized phase output and the edge-detected

quadrature output of the motor to the logic, and observed the up and down output
values. When the motor turns clockwise, UP should pulse “1-1-1-0-1-1-1”. When
the motor turns counterclockwise, DOWN should pulse “1-1-1-0-1-1-1”. Recall
that the logic is active-low.

 This concludes the testing and simulation of all individual components of the circuit.
According to the original hypothesis since each individual component has been tested and works,

Figure 12: Edge Detection & Synchronization Test Circuit

https://youtu.be/ygAyl9CfRJU

Benjamin Straus
May 9, 2018

DSF Final Project
Robot Arm Report

Video Link: https://youtu.be/ygAyl9CfRJU
then the system is expected to behave as desired. The next stage involves implementing the FSM
on the breadboard

Stage 4: Implementing the FSM
 This stage requires little discussion having described the function and design of the FSM
in previous sections. However, an important note is that the availability and function of various
ICs changed which ones were used. For example, when ANDs were not available or when there
were many NANDs free on the breadboard, I used a NAND and inverted the output (by
NANDing the output with itself). This made it so that I simplified my design and was as space
conscious as possible so that the breadboard didn’t run out of space.

Stage 5: Implementing and Connecting the Additional Components
 After implementing my FSM, I then built and tested each individual additional
component. Once they were tested (as described in Stage 3), I connected them to each other as
shown in Figure 1. The final layout of the breadboard is shown in Figure 13. Note that a very
specific color convention was used. As well, only the wiring that travels from one sub-system to
another arches above the plane of the breadboard (for example, clock outputs [red wires in the
middle] and counter to register [yellow wires at the top]). Any intra-component wiring is flat (for
example, the FSM next state wiring).

Stage 6: Testing System (Inputs, Outputs, Behavior Tested)
 The very final stage is testing the completed circuit. This was done by changing each
input to observe every possible case and observe the output to ensure the desired behavior is
obtained. The various cases (not including those described in Stage 3 for the FSM) are explained
below:

• Action: Reset pressed, [motor moved, action pressed] x 4 (S2S1S0=000,001,010,011)
• Result: Motor begins moving, first to the motor’s location when the action button was

first pressed, then to the second, and so on. (S2S1S0=100,101,110,111)
• At any point in the cycle, pressing the reset button returns the system to the reading

state and it awaits the pressing of the action button
 In order to know whether the system was in the right state at a given point, I used LEDs
(the three most down and to the left in Figure 13 & 14) to represent the state. I saw that in record
mode, the S2 bit was always 0 while in playback it was 1. This is as expected. Further, I could see
that S1S0 represented which stored value the motor is recording (in the recording states) or which
one it is moving to (in the playback states). The complete testing is executed and explained in the
video here: https://youtu.be/ygAyl9CfRJU.

Problems Faced:
• In simulating my FSM, I found unpredictable behavior that resulted from R being 0. I

found that this was because I had at first neglected to include R=0 in my state

https://youtu.be/ygAyl9CfRJU
https://youtu.be/ygAyl9CfRJU

Benjamin Straus
May 9, 2018

DSF Final Project
Robot Arm Report

Video Link: https://youtu.be/ygAyl9CfRJU
progression condition. This was easily fixed by adding that condition which just
required using a single AND gate with R’ and the existing output.

• In the initial testing phase, I observed very strange clock behavior (I observed this with
an oscilloscope). I found that this was the result of a short in my circuit that was the
result of not powering a few of my ICs (since they weren’t being used yet, but were
connected to outputs). This was easily fixed once I connected those ICs properly.

• At first, I both cleared and loaded values to the counter which resulted in an
indeterminate state since I may have either loaded or reset last (depending on whether
CLR or LOAD was active more recently). This was easily fixed by wiring CLR to
ground and have only LOAD used to “reset” (to preset value) by connecting to reset.

• There were a few wiring errors in the FSM when first implemented. This was easily
debugged by seeing which state bits were misbehaving when the action button was
pressed (i.e. they didn’t progress from S2S1S0=000 to 001 to 010 to 011, and so on). I
found that I had wired one output to pin 8 rather than 7. I also found that I had inverted
an input because I used a NAND rather than AND and forgot to invert the output. These
were both fixed once the problem was identified by making the correct connections.

Figure 14: Final Implemented System (labeled for components)

https://youtu.be/ygAyl9CfRJU

Benjamin Straus
May 9, 2018

DSF Final Project
Robot Arm Report

Video Link: https://youtu.be/ygAyl9CfRJU

Figure 13: Final Implemented System (unlabelled to show wiring)
White = Vcc & Ground
Column 1 top half (Registers): [Red] Register to comparator; [Yellow] Counter to register; [Green] FSM to register
Column 1 bottom half (Comparators): [Black] Comparator to Comparator; [Yellow] Counter to Comparator; [Red]
Reg to comparator
Column 3 (FSM): [Green] S2 next state logic; [Yellow] S1 next state logic; [Black] S0 next state logic
Red over arching wires: System clock output
Black & Red over arching wires: State bits from FSM to other sub-components

https://youtu.be/ygAyl9CfRJU

